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The Structure of Tetramethylammonium Enneaiodide*

By Wirriam J. Jamest, R.J. Hace}, DExTeEr FrRENCH AND R. E. RUNDLE
Iowa Agricultural Experiment Station, Ames, Iowa, U.S.4.

(Recetved 4 April 1955)

The structure of tetramethylammonium enneaiodide, N(CH,;),I,, has been found by two-dimensional
Fourier methods coupled with the use of inequalities, and has been refined by difference syntheses.
The structure consists of planes of iodine atoms; within the plane there is some justification for
singling out I ions, similar to, but less symmetrical than, the I ion in tetramethylammonium
pentaiodide. Between these planes lie the N(CH,); ions, each cation surrounded by six I, molecules
with their axes normal to the main planes of iodines, and weakly associated with them. Except
for the I, molecules between planes all I-I distances are considerably longer than the distance in I,,
and comparable with those found in I, Iy and IZ~.

Introduction

A recent structural study (Hach & Rundle, 1951)
suggests that the polyiodides are not closely related
to other polyhalides. In tetramethylammonium pen-
taiodide V-shaped I7 ions were found with I-I dis-
tances of 2:93 and 3:14 A, far greater than the I-I
distance in I, (270 A, Harris, Mack & Blake, 1928),
but not unlike the distances reported by Mooney
(1935) for the unsymmetrical I3 ion. The latter report
had been given little weight in discussions of polyhalide
ions (Pauling, 1940), since it was in contrast to reports
of a symmetrical, linear ICl; ion (Wyckoff, 1920;
Mooney, 1939) and a symmetrical, square ICl; ion
(Mooney, 1938), both with I-Cl distances quite near
the sum of the covalent radii. More recently long
I-I distances, similar to those in I3 and I ions, have
been reported for the complex I~ ion (Havinga,
Boswijk & Wiebenga, 1954).

Hach & Rundle have suggested that iodine forms
strong bonds using 5d orbitals (outer d orbitals) only
where forming bonds to the more electronegative
halogens, and that the long bonds in polyiodide ions
result from the interaction of a negative iodide ion
with the highly polarizable iodine molecule. The
interaction is strong enough, apparently, to lead to
partial charge transfer through resonance of the
covalent bond, and the final structure is further
complicated by the influence of neighboring positive
iong which, in the crystal, lead to non-equivalent bonds
even in the case of I3.

Though this picture of the nature of polyiodide ions
appears relatively satisfactory, it permits no easy
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inference of the structure of the more complex
polyiodide ions. It was to see if the more complex
ions conform to some consistent structural pattern
that the study of the Iy ion was undertaken.

Structure determination

Preparation of the compound

N(CHj;),I, was obtained in the form of lath-shaped
crystals by adding a two- to threefold excess of iodine
to tetramethylammonium iodide dissolved in boiling
alcohol. Two separate phases formed, N(CH,),I; and
N(CHy),l; , the relative amounts depending upon the
excess of iodine added.

Physical data

The monoclinic crystals of N(CH,),I, possess a
greenish-black metallic luster, and, on exposure to air,
slowly lose iodine. The lattice constants were deter-
mined from zero-layer Weissenberg and precession

photographs. The unit cell dimensions were found to
be

ay = 1160, b, = 15:10, ¢, = 1318 4; B =95°25".

Samples were analyzed for tetramethylammonium
iodide by volatilizing free iodine at about 200° C.
The average of three determinations was 16-539, as
compared to the theoretical value of 16-539%,. The
observed density, obtained using a pycnometer with
mineral oil, was 3-47 g.cm.=® as against a calculated
density of 3-51 g.cm.—3 obtained from X-ray data for
4 N(CHj), I, per unit cell.

A primitive lattice was indicated by reflections from
all types of planes, except that (k0l) reflections were
observed for i+l = 2n only, and (0k0) reflections
were present only for k. = 2n. The space group is,
accordingly, P2,/n, for this choice of axes.
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Parameter determination

About 350 independent reflections (20I), (hkO),
(Okl), (hkh) and (kkk) were obtained using a precession
camera. Timed exposures were prepared on a G. E.
XRD-3 diffraction unit employing regulated current
and voltage. The intensities were judged by visual
estimation methods and then placed on an absolute
scale using the method of Wilson (1942).

Patterson projections were synthesized on IBM,
using punched cards. The high degree of coincidence
in the projection precluded the possibility of obtaining
more exact information for Fourier analysis, but the
projection on to the (010) plane (Fig. 1(a)) did indicate

(a) (b)

Fig. 1. (¢) Patterson projection on to the (010) plane.
(b) Fourier projection on to the (010) plane.

that all the iodine atoms projected into lines in the
direction of (a+c), approximately 3 A apart.

Using trial-and-error procedures restricted by the
possible interpretations of P(z, z), the electron-density
map shown in Fig. 1(b) was obtained. A study of this
projection suggested that three iodine atoms coincided
in projection at = 42/60 and z = 10/60 of the respec-
tive axial lengths. It will be noted that the peaks are
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nicely defined and that the electron densities are those
expected for three atoms in one peak and two in the
remaining. In addition the peaks are elongated in the
direction (a+c) suggesting that the iodine atoms do
not project exactly upon one another.

The reliability factor, B = X||F,|—|F||+Z|F,|, for
this interpretation was 0-29.

Inequalities

Because of difficulties encountered in determining
phases for further Fourier analysis, the method of
inequalities was applied to the data in the form of
Grison’s (1951) relationships. Since the contribution to
scattering was predominantly from iodine, the unitary
structure factor reduced to U(hkl) = F(hkl)|Nf(hkl).

To determine the feasibility of this approach the
method was first applied to the (A0l) data, since these
data possessed the largest ¢ value. Signs of a total of
59 out of 79 observed reflections were obtained
(Table 1). A Fourier projection (010) was synthesized
on X-RAC. The results were almost identical with the
first electron-density map obtained (Fig. 1(b)).

Having established the validity of the Fourier
projection on to the (010) plane, inequalities were
applied to other planes to obtain information concern-
ing the y parameters. Owing to a smaller number of
reflections of larger amplitudes for these other zones,
it was necessary to apply the self-consistent technique
based on the probable validity of the relation
Sy.x = Sg.Sg, where S denotes the algebraic sign
of three strong reflections (Zachariasen, 1952; Sayre,
1952; Cochran, 1952).

The signs of 27(0kI) reflections were obtained in this
fashion, and a Fourier projection was prepared on
X-RAC. The phases of weaker amplitudes were deter-
mined by the predominance of one sign among the
vectors.

Table 1. Unitary factors and signs

Indices U(hOl) Indices U(ROL)
(h00) 6 —0-33
4 +0-10 8 +0-12
8 —0-36
(h03)
(RO1) 5 +0-15
7 —0-46 3 —0-71
= 1 —0-25
;o s rou
5 o094 7 +0-17
7 +0-25
9 +0-15 (h04)
11 —0-40 9 +0-60
6 +0-15
(h02) s +0-21
10 —0-41 2 —0-34
8 4-0-24 0 +0-09
8 +0-25 2 +0-13
1 +0-37 8 +0-31
2 +033
2 —0-44 (R05)
4 40-19 7 —0-52

Indices U(hOI) Indices U(rOl)
5 —0-55 1 —0-24
1 +0-41 0 —0-66
3 +0-47
5 --015 (R09)
7 +0-72
(h06) 5 —0-31
g —0-22 3 —0-32
6 +0:52
1 —0-37 (h,0,10)
2 +0-35 8 —0-75
] +0-13 4 —0-36
2 —0-34 2 +0-25
(hOT) (,0,11)
[} —0-38 5 +0-40
7 —0-29 3 +0-39
5 +0-65
(R,0,12)
(r08) 6 +0-49
8 4-0-39 g +0-38
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The application of inequalities by the above method
to (hk0) data did not result in any useful information,
despite the considerable degree of consistency obtained
among signs of the structure factors.

These analytical methods, unfortunately, did not
provide a structure with satisfactory holes for the
large tetramethylammonium cation, but enough in-
formation was obtained from the projection on (100)
to prepare scale models, whereby it was discovered
that a simple shift in two y parameters led to satis-
factory holes. This shift altered the signs of four major
(0kl) reflections obtained from the inequalities, and
permitted refinement, hitherto unattainable.

Refinement of the parameters

Successive difference syntheses for both (0kf) and
(hk0) data were prepared until the change in the
reliability factor, R, was negligible.

In addition, the parameters obtained from these
two planes were used to calculate the R factors for
(ROI) and (kkh) data. The R factors for observed
(hOL), (OKl), (hkO) and (kkh) data, including missing
reflections weighted as half of the lowest observed
intensity, are respectively, 0-17, 0-18, 0-17 and 0-186.
The final values of the parameters are given in Table 2.

Table 2. Atomic coordinates

Difference syntheses parameters

Atom ] Y z
1 0-046 0-880 0-586
2 0-191 0-729 0-710
3 0-181 0-084 0-690
4 0-150 0-455 0-665
5 0-041 0-318 0-534
6 0-211 0-058 0-041
7 0-076 0-084 0-190
8 0-249 0-400 0-061
9 0-086 0-416 0-189

The agreement between calculated and observed struc-
ture factors is shown in Table 3. Important iodine
distances are given in Table 4.

The refinement was hampered by the quality of the
data and the fact that only 350 independent reflections
were obtained for solving this 27-parameter problem.
It was extremely difficult to obtain good single
crystals of suitable size, and it proved to be extremely
time consuming to obtain high-order reflections with-
out the use of large crystals with a prohibitive degree
of absorption. The crystals generally contained flaws,
and were, as previously mentioned, unstable in air.
This discouraged an attempt to make a complete three-
dimensional study. Nonetheless, differences in I-I
distances greater than 0-2 A are certainly significant,
and the general nature of the structure is clear from
work of this accuracy.

Discussion

In tetramethylammonium enneaiodide five-ninths of
the iodine atoms lie in densely packed layers separated
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Table 3. Observed and calculated structure factors
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4,0,10 0 -7 08 33 a3 212 28 *27 55 [] 0
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by 9:1 A. Between these widely separated layers are
the tetramethylammonium ions, each ion surrounded
by six I, molecules, also lying between the iodine
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Fig. 2. (a) Projection, normal to ua—c¢, of iodine molecules into one iodine net. Fach solid circle represents an I, molecule
with its axis normal to, and in front of, the net of iodines shown in (b), while each broken circle represents an I, molecule
with its axis normal to, and behind, the same plane. Open circles with solid lines are iodines in the plane of the I ions.

(b) Arrangement of iodine atoms in one net normal to a-c.

sheets, and with their molecular axes perpendicular to
the main sheet of iodines. The overall nature of the
complex can best be seen from Fig. 2(a), where the

Table 4. Interatomic distances in tetramethylammonium

enneatodide
Atoms Distance (A)
1-2 3-18
1-7 3-43
1-8 3-24
1-5 3-49
2-3 2:90
3-4 3-24
4-5 2-91
6-7 2-66
8-9 2-67

tetramethylammonium ions have not been shown;
they reside in the large hexagonal holes between the
solid circles in that figure. These hexagonal holes are
some 10 A across.

Within each sheet (Fig. 2(b)) there is some justifica-
tion for picking out I3 ions, within which I-I distances
are 2:90, 2-91, 3-18 and 3-24 A. (The difference be-
tween 3:24 A and 3-18 A within this ion is probably
significant.) All other distances within the sheet are

@, o o

o o oy

363 = .,
@/O/O 2:92 O\OE

310
Fig. 3. I ion in tetramethylammonium pentaiodide.

3-49 A or larger, and, since distances of about 3-5 A
occur between molecules in I,, only weak interactions
are implied for distances this great.

The I ion in the enneaiodide sheet is again sub-
stantially V-shaped, as in the tetramethylammonium
pentaiodide structure, with an apex angle of 86-5°
and arms which are linear within about 7°. It does not,
however, have the shape of the I7 ion in tetramethyl-
ammonium pentaiodide (Fig. 3), where the iodine at
the apex appears to be most like an iodide ion. In the
enneaiodide, Fig. 2(b), I(1), at one extreme, is most
like an iodide, having only long distances (3-24 and
3-18 A) to its nearest neighbors. That I(1) should be
regarded as the iodide is also confirmed by the fact
that it is the iodine in the sheet which interacts most
strongly with I, molecules between the sheets (Fig.4).

o -
318
&)

2-90

2:67
~

3-24

2:91

Fig. 4. Interaction of iodine molecules with Iy ion. Within-
layer lighter shaded atoms are behind the plane of the

paper.

Presumably the charge on the iodide is distributed
by resonance of the type

I—I-I=I-1-1-,

and presumably the positions of the cations influence
the extent of this type of resonance by favoring nega-
tive charges on iodines nearest the cations. Since,
however, the cations have not been located directly,
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but only the holes into which they must fit, it is not
possible to discuss this influence quantitatively.

The I, distances in the I, molecules between sheets
are only about 2-67 A, equal, within the experimental
error, to the I-I distance reported for the I, crystal
(2-70 A). In view of this short distance it is surprising
to find that the I, molecules are associated rather
strongly with the sheets. As shown in Fig. 4, each
I(1) of an I ion forms one link of 3:24 A to an I,
between sheets, and another, to a different I,, of
3:43 A. The shorter of these distances is as short as
the longest distance in the I ion within the sheet,
and gives some justification to picking out an I ion.
If distances as long as 3:4 A are considered to represent
a significant amount of I-I bonding, then the ennea-
iodide is better thought of as continuous sheets, with
I, branches sticking out on each side.

In all the polyiodides studied, more or less discrete
ions can be picked out, with shorter distances of
2:8-2:9 A alternating with distances of 3-1-3-25 A in
such a way as to suggest I, molecules interacting with
iodide ions, and some resonance of the iodine-iodine
bond with iodide-iodine bond. In all cases, also, where
an iodide interacts with more than one I, molecule it
forms iodide-iodine bonds at approximately right
angles, tending to confirm a previous suggestion as to
the nature of the bonding, i.e. that a p-orbital of the
iodide is required for each bond and that 5d-orbitals
are not important in polyiodide ions, though they
must be used in mixed polyhalides. These right-angle
bonds have now been observed in Iy, 12~ and Ij.
In the two higher polyhalides, Iy and IZ~, there is a
tendency toward a few more nearly discrete I, molecules
interacting quite weakly with I3 or I7 ions, and there
seems to be a significant increase in the iodide-
iodine bond length in going from Iy or I, from 3-1
to 32 A. Both effects would follow from partial
delocalization on the iodide charges by resonance in
interacting with I, molecules.

There is common to polyiodides and iodine a ten-
dency to form dense planes within which prominent
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interionic or intermolecular distances are ~ 3-5 A, while
between planes van der Waals distances of 4-3 A are
found.

Thus, the polyiodides are structurally related, but
also structurally complex. It seems likely that part
of the structural complexity arises from the influence
of cations in determining the distribution of charges,
and, therefore, the bond character, in the polyhalide
ions. The lack of similarity of polyiodides to other
polyhalides, such as ICly and ICl; is now well con-
firmed.
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and for valuable discussions both with him and with
the members of the X.ray group at Pennsylvania
State University.

References

CocrrAN, W. (1952). Acta Cryst. 5, 65.

GrisoN, E. (1951). Acta Cryst. 4, 489.

Hacr, R.J. & Runoig, R. E. (1951). J. Amer. Chem.
Soc. 73, 4321.

Harris, P. M., Mack, E. & Brake, F.C. (1928). J.
Amer. Chem. Soc. 50, 1583.

Havinga, E. E., Boswwg, K. H. & WiepeNcea, E. H.
(1954). Acta Cryst. 7, 487.

Mooxey, R. C. L. (1935). Z. Kristallogr. 90, 143.

MooxEey, R. C. L. (1938). Z. Kristallogr. 98, 371.

MooxEey, R. C. L. (1939). Z. Kristallogr. 100, 519.

Pavrvg, L. (1940). The Nature of the Chemical Bond,
2nd ed., p. 111. Ithaca: Cornell University Press.

Savre, D. (1952). Acta Cryst. 5, 60.

Wison, A.J.C. (1942). Nature, Lond. 150, 151,

Wyckorr, R.W.G. (1920). J.dmer. Chem. Soc.
1100.

ZACHARIASEN, W, H. (1952). Acta Cryst. 5, 68.

42,




